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Nonparametrics

Review of methods that aim to estimate:
1 A density function, f (x)

I Empirical distribution
I Histogram
I Kernel density estimators ⇒ Tuning parameter: bandwidth h

2 A conditional expectation, m(x) = E [Y |X = x ]
I Bin scatter
I Kernel regression ⇒ Tuning parameter: bandwidth h
I Series regression ⇒ Tuning parameter: number of series p
I Local polynominal regression ⇒ Tuning parameters: h and p

Review of criteria for choosing optimal tuning parameter:

Eye-ball it

Plug-in method

Cross-validation
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Density estimation

Goal: estimate the density f (x) of a random variable X using iid data
X1, ...,XN .

Ideally, want the nonparametric estimate of a pdf to satisfy: f̂ (x) ∈ [0, 1]
and

∑
x f̂ (x) = 1.

If Xi discrete (and not many support points):

Empirical distribution:

f̂ (x) =
1

N

∑
i

1{Xi = x}

That is, the empirical frequency of the points in the support of X .
Satisfies: √

N(f̂ (x0)− f (x0))
d→ N(0, f (x0)(1− f (x0)))
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Density estimation

If Xi continuous:

1 Histogram: splits the continuous support of X into a finite number
of bins.
⇒ But binning throws away info...

2 Kernel density estimators: similar to histograms but they output a
pdf and there’s an optimal way to pick the bandwidth (bin size).
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Density estimation: kernel
Note that pdf of X satisfies:

f (x0) = lim
h→0

F (x0 + h)− F (x0 − h)

2h

Plug-in principle then suggests:

f̂ (x0) =
1

2h

[
1

N

∑
i

1{Xi ≤ x0 + h} − 1

N

∑
i

1{Xi ≤ x0 − h}

]

=
1

2h

[
1

N

∑
i

1{x0 − h ≤ Xi ≤ x0 + h}

]

=
1

Nh

[∑
i

1

2
1

{∣∣∣∣Xi − x0
h

∣∣∣∣ ≤ 1

}]

=
1

Nh

∑
i

K

(
Xi − x0

h

)
Where K (.) is the kernel function and h the bandwidth.

In particular, this Kernel function is uniform, but there are other options...
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Density estimation: kernel

f̂ (x0) =
1

Nh

∑
i

K

(
Xi − x0

h

)
Kernel function measures the proximity of Xi to x0: whether
Xi ∈ [x0 − h, x0 + h] and, if so, weights according to how close to x0.

Uniform kernel: assigns same weight 1/2 to every Xi ∈ [x0 − h, x0 + h].

K

(
Xi − x0

h

)
=

1/2 if
∣∣∣Xi−x0

h

∣∣∣ ≤ 1

0 if
∣∣∣Xi−x0

h

∣∣∣ > 1

Triangular kernel: assigns a positive weight to Xi ∈ [x0 − h, x0 + h], and
higher the closer to x0.

K

(
Xi − x0

h

)
=


(

1−
∣∣∣Xi−x0

h

∣∣∣) if
∣∣∣Xi−x0

h

∣∣∣ ≤ 1

0 if
∣∣∣Xi−x0

h

∣∣∣ > 1
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Density estimation: kernel

Epanechnikov kernel: assigns a positive weight to Xi ∈ [x0 − h, x0 + h],
and higher the closer to x0.

K

(
Xi − x0

h

)
=


3
4

(
1−

(
Xi−x0

h

)2)
if
∣∣∣Xi−x0

h

∣∣∣ ≤ 1

0 if
∣∣∣Xi−x0

h

∣∣∣ > 1

Normal kernel: assigns a positive weight even to observations outside of
[x0 − h, x0 + h], and higher the closer to x0.

K

(
Xi − x0

h

)
= (2π)−1/2e

− 1
2

∣∣∣Xi−x0
h

∣∣∣2
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Density estimation: kernel

Common kernels are symmetric density functions with mean zero. For
such a kernel, the estimated density satisfies f̂ (.) ≥ 0 and

∫
f̂ (x)dx = 1.
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Density estimation: kernel

Can show bias and variance are:

b(f̂ (x0)) ≡ E [f̂ (x0)]− f (x0) =
h2

2
f ′′(x0)

∫
z2K (z)dz + O(h4)

Var(f̂ (x0)) =
1

Nh
f (x0)

∫
K (z)2dz + o

(
1

Nh

)
Where z = x−x0

h and variance and expectation taken wrt Xi .

Notice variance-bias trade-off wrt h: small h (higher flexibility of model,
“less smooth”) reduces bias but increases variance.

MSE (f̂ (x0)) = Var(f̂ (x0)) + b(f̂ (x0))2

Note: MSE is a function of x0. Epanechnikov kernel minimizes the MSE.
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Density estimation: kernel

Consistency: If N →∞, h→ 0 and Nh→∞:

b(f̂ (x0))→ 0 ; Var(f̂ (x0))→ 0 ; f̂ (x0)
p→ f (x0)

Asymptotic normality: If N →∞, h→ 0 and Nh→∞:

√
Nh(f̂ (x0)− f (x0)− b(x0))

d→ N

(
0, f (x0)

∫
K (z)2dz)

)
If, in addition,

√
Nhb(x0)→ 0:

√
Nh(f̂ (x0)− f (x0))

d→ N

(
0, f (x0)

∫
K (z)2dz)

)
Condition satisfied if

√
Nh5 → 0 (ie, h is small enough: “undersmoothing”)
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Density estimation: kernel

Choice of bandwidth h implies variance-bias trade-off:

Large h: f̂ (x0) is smoother (low model flexibility). Low variance, high
bias

Small h: f̂ (x0) more jagged (high model flexibility). High variance,
low bias

Optimal choice of h? Options:

1 Eye-ball it.

2 Plug-in methods.

3 Rules of thumb.

4 Cross-validation.
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Density estimation: kernel
Example: world income per capita distribution.

Small h:
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Density estimation: kernel

Medium h:
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Density estimation: kernel
Large h:
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Density estimation: kernel

f̂ (x0) =
1

Nh

∑
i

K

(
Xi − x0

h

)
Integrated mean squared error:

IMSE (f̂ ) =

∫
MSE (f̂ (x0))dx

Note: remember integrated risk under quadratic loss? The risk (which under

quadratic loss is the MSE) was a function of θ, and the integrated risk integrated

over θ. Well, this is the same idea, with x0 as θ.

h∗ = argmin
h

IMSE (f̂ )

Result depends on f ′′, which we don’t know, and K (.), which we choose.
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Density estimation: kernel
Plug-in method: estimate f ′′ using a first-pass bandwidth and then
plug-in to the formula for f ∗. But then need to find optimal bandwidth for
this first pass, etc, etc.

Rule of thumb: assume f is normal (“normal reference rule”).

If K (.) normal:

h∗ =
1.059σ

N1/5

If K (.) triangular:

h∗ =
2.576σ

N1/5

If K (.) Epanechnikov:

h∗ =
2.345σ

N1/5

f̂ (x) is typically fairly insensitive to the choice of kernel, as long as the
optimal bandwidth is used for each kernel.
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Density estimation: kernel
Normal reference rule with different kernel functions:

Giselle Montamat Nonparametric estimation 17 / 27



Density estimation: kernel

Note that
√
N(h∗)5 → c > 0, so bias doesn’t dissapear in the asymptotic

distribution. Would need a bandwidth smaller than these h∗, aka require
undersmoothing.

Silvernman’s rule of thumb:
The normal reference rule may oversmooth bimodal distributions. For a
normal kernel, Silverman proposes to reduce the factor 1.059 to 0.9 and to
use the minimum of two estimators of σ:

h∗ =
0.9min{σ̂, ˆIQR/1.349}

N1/5

Where σ̂ is the sample standard error and IQR is the interquartile range
(and for a normal distribution σ = IQR/1.349).
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Conditional expectation estimation

Goal: estimate m(x) = E [Y |X = x ] without taking a strong stand on the
functional form of m(x).

If Xi discrete (and not many support points):

Bin scatter:

1 Group the data points X1, ...,XN into a finite number S of bins (like
histogram).

2 Compute the average outcome Y in each bin.

3 Plot the average outcomes against the midpoint of each bin.

(Like regressing Y on S indicator functions that indicate if Xi is in the
corresponding bin).

But if X continous, binning throws away info, doesn’t yield an estimate of
m(x) for every possible x and not obvious how to pick the bins.
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Conditional expectation estimation: kernel regression

If Xi continuous:

Kernel regression (Nadaraya-Watson):

It is weighted average:

m̂(x0) =
∑
i

K
(
Xi−x0

h

)
∑

j K
(
Xj−x0

h

)
︸ ︷︷ ︸

≡wi

Yi

Where the weights wi sum to 1, and observations closer to x0 get larger
weights.
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Conditional expectation estimation: kernel regression

Say X ∈ Rk .

Consistency: If N →∞, h→ 0 and Nhk →∞ (+ regularity conditions):

m̂(x0)
p→ m(x0) = E [Y |X = x0]

Asymptotic normality: If N →∞, h→ 0, Nh→∞ AND Nhk+4 → 0
(which guarantees that the bias goes to 0, aka “undersmoothing”):

√
Nhk(m̂(x0)−m(x0))

d→ N

(
0,
σ2(x0)

f (x0)

∫
K (z)2dz)

)

Giselle Montamat Nonparametric estimation 21 / 27



Conditional expectation estimation: kernel regression
h is the tuning/smoothing parameter:

Large h: regression is smoother (lower model flexibility)

Small h: regression is more wiggly (higher model flexibility)

Optimal h? Options: eye-ball it, plug-in methods, cross-validation.
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Conditional expectation estimation: kernel regression
Cross-validation:
Idea: choose h to minimize an estimate of the out-of-sample error.

hCV = argmin
h

CV (h)

hCV = argmin
h

1

J

∑
j

φj(h)

hCV = argmin
h

1

J

∑
j

1

|Ij |
∑
i∈Ij

(Yi − m̂−j(Xi ))2

m̂−j is the kernel regression estimator that excludes observations in fold j .
Note that, if J = N:

hCV = argmin
h

1

N

∑
i

(Yi − m̂−i (Xi ))2

m̂−i is the kernel regression estimator that excludes observation i from the
sample.

Exercise: Pset 11, Exercise 2 asks you to show that CV (h) is indeed an unbiased

estimator of the out-of-sample error.
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Conditional expectation estimation: series regression

Series regression:

m̂(x0) = b̂0 + b̂1x0 + ...+ b̂px
p
0

Where:

b̂ = arg min
b0,...,bp

∑
i

(Yi − b0 − b1Xi − b2X
2
i ...− bpX

p
i )2

That is, it fits a polynominal of Xi of order p.

Note 1: Stome-Weirstrauss approximation theorem: any continuous m(x)
can be well approximated by linear combinations of polynomials over
compact sets.

Note 2: this notation assumes for simplicity that x is scalar, but can
extend to case where it has higher dimension.
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Conditional expectation estimation: kernel regression
Consistency: If p →∞ as N →∞ (and true m(x) is smooth):

m̂(x0)
p→ m(x0) = E [Y |X = x0]

Note: p depends on N, denote as pN . It is the tuning parameter:

Small pN : regression is smoother (lower model flexibility)
Large pN : regression is jagged (higher model flexibility)
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Conditional expectation estimation: series regression

A combination of kernel regression and series regression...

Local polynominal regression:
For each x0, compute m̂(x0) = b̂0 + b̂1x0 + ...+ bpx

p
0

b̂ = arg min
b0,...,bp

∑
i

K

(
Xi − x0

h

)
(Yi − b0 − b1Xi − b2X

2
i ...− bpX

p
i )2

That is, fit a polynominal regression locally around each point x0.

Kernel regression is particular case of local polynomial regression that uses p = 0.

Series regression is a particular case of local polynomial regression that uses
constant kernel.

Note: again, this notation assumes for simplicity that x is scalar, but can
extend to case where it has higher dimension.
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Conditional expectation estimation: series regression
Special case:

Local linear regression:
For each x0, compute m̂(x0) = b̂0 + b̂1x0

b̂ = argmin
b0,b1

∑
i

K

(
Xi − x0

h

)
(Yi − b0 − b1Xi )

2

Giselle Montamat Nonparametric estimation 27 / 27


