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Nonparametrics

Review of methods that aim to estimate:
@ A density function, f(x)
» Empirical distribution

» Histogram

» Kernel density estimators = Tuning parameter: bandwidth h
@ A conditional expectation, m(x) = E[Y|X = x]

» Bin scatter

» Kernel regression = Tuning parameter: bandwidth h

» Series regression = Tuning parameter: number of series p

> Local polynominal regression = Tuning parameters: h and p

Review of criteria for choosing optimal tuning parameter:
o Eye-ball it
@ Plug-in method

@ Cross-validation
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Density estimation

Goal: estimate the density f(x) of a random variable X using iid data
X1y XN-

Ideally, want the nonparametrlc estimate of a pdf to satisfy: f(x) € [0,1]

and > f( )=
If X; discrete (and not many support points):

Empirical distribution:

f(x) = NZl{X = x}

That is, the empirical frequency of the points in the support of X.
Satisfies:

VN(f(x0) — F(x0)) % N(O, F(x0)(1 — F(x0)))
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Density estimation

If X; continuous:

@ Histogram: splits the continuous support of X into a finite number
of bins.
=- But binning throws away info...

@ Kernel density estimators: similar to histograms but they output a
pdf and there's an optimal way to pick the bandwidth (bin size).
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Density estimation: kernel
Note that pdf of X satisfies:

. F(xo+h)— F(xg—h
o) = fim e

Plug-in principle then suggests:
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Where K(.) is the kernel function and h the bandwidth.
In particular, this Kernel function is uniform, but there are other options...
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Density estimation: kernel

n 1 Xi — Xxo
f = K=
o) = i K (752
Kernel function measures the proximity of X; to xg: whether
Xi € [xo — h,xo + h] and, if so, weights according to how close to xgp.

Uniform kernel: assigns same weight 1/2 to every X; € [xg — h, xo + h].

h 0 if ‘% >1

<1

Triangular kernel: assigns a positive weight to X; € [xo — h, xo + h|, and
higher the closer to xp.

K<Xi—Xo>_ (1 [%7]) i %] <1

h 0 if |Xixe| > 1
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Density estimation: kernel

Epanechnikov kernel: assigns a positive weight to X; € [xo — h, xo + h],
and higher the closer to xp.

() Ji (0 0

h if | X

»lw

Xi—xo
h

<1

o

>1

Normal kernel: assigns a positive weight even to observations outside of
[xo — h, xo + h], and higher the closer to xp.

P Xj—Xx 2
e
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Density estimation: kernel

K(z) =1{|z| < 1}/2 K(z) = (1-|zD1{l2| <1}
1 1
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Uniform Triangular
K(2) = (2m) "% '/ K(2) = (3/4)(1 - 2%)1{|z| < 1}
1 1
0 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Normal Epanechnikov

Common kernels are symmetric density functions with mean zero. For
such a kernel, the estimated density satisfies 7(.) > 0 and | f(x)dx = 1.
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Density estimation: kernel

Can show bias and variance are:

b(F(x0)) = E[f(x0)] — f(x0) = %f”(xo) / 22K (2)dz + O(h*)

A 1 5 1
Var(f(x0)) = mf(xo) / K(z)°dz+ o (I\/h)
Where z = *3* and variance and expectation taken wrt X;.

Notice variance-bias trade-off wrt h: small h (higher flexibility of model,
“less smooth” ) reduces bias but increases variance.

MSE(f(x0)) = Var(f(x0)) + b((x0))?

Note: MSE is a function of xy. Epanechnikov kernel minimizes the MSE.
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Density estimation: kernel

Consistency: If N — oo, h — 0 and Nh — oc:
b(f(x0)) = 0 ; Var(f(x)) — 0 ; F(x0) 2 f(x0)

Asymptotic normality: If N — 0o, h— 0 and Nh — oo:
VNh(f(x0) — F(x0) — b(x0)) > N (o, f(x0) / K(z)2d2)>
If, in addition, v/Nhb(xg) — 0:
VNh(f(x0) — F(x0)) % N (o, f(x0) / K(z)2d2)>

Condition satisfied if v/Nh®> — 0 (ie, h is small enough: “undersmoothing”)
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Density estimation: kernel

Choice of bandwidth h implies variance-bias trade-off:
o Large h: f(xp) is smoother (low model flexibility). Low variance, high
bias
@ Small h: f(xo) more jagged (high model flexibility). High variance,
low bias

Optimal choice of h? Options:
© Eye-ball it.
@ Plug-in methods.
© Rules of thumb.

@ Cross-validation.
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Density estimation: kernel
Example: world income per capita distribution.

Small h:
kernel density estimator
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kernel: normal, bandwidth =0.1
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Density estimation: kernel
Medium h:

kernel density estimator

density

T T T

8
log GDP per capita
kernel: normal, bandwidth =0.5
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Density estimation: kernel
Large h:

kernel density estimator

8
log GDP per capita
kernel: normal, bandwidth =1
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Density estimation: kernel

f(x0) NhZK<

Integrated mean squared error:

IMSE(f) = / MSE (f(x0))dx

Note: remember integrated risk under quadratic loss? The risk (which under
quadratic loss is the MSE) was a function of 6, and the integrated risk integrated
over 0. Well, this is the same idea, with xp as 6.

h* = argn%in IMSE ()

Result depends on f”, which we don't know, and K(.), which we choose.
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Density estimation: kernel

Plug-in method: estimate f” using a first-pass bandwidth and then

plug-in to the formula for f*. But then need to find optimal bandwidth for
this first pass, etc, etc.

Rule of thumb: assume f is normal (“normal reference rule").
e If K(.) normal:

b 1.059¢0
TON1/s
o If K(.) triangular:
o _ 25760
TON1/B
e If K(.) Epanechnikov:
. 2.345¢0
TON1/B

f(x) is typically fairly insensitive to the choice of kernel, as long as the
optimal bandwidth is used for each kernel.
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Density estimation: kernel

Normal reference rule with different kernel functions:
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Density estimation: kernel

Note that \/N(h*)> — ¢ > 0, so bias doesn't dissapear in the asymptotic
distribution. Would need a bandwidth smaller than these h*, aka require
undersmoothing.

Silvernman’s rule of thumb:

The normal reference rule may oversmooth bimodal distributions. For a
normal kernel, Silverman proposes to reduce the factor 1.059 to 0.9 and to
use the minimum of two estimators of o

~0.9min{5, IQR/1.349}

o N1/5

Where 6 is the sample standard error and /QR is the interquartile range
(and for a normal distribution o = IQR/1.349).

h*
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Conditional expectation estimation

Goal: estimate m(x) = E[Y|X = x| without taking a strong stand on the
functional form of m(x).

If X; discrete (and not many support points):

Bin scatter:

© Group the data points Xi, ..., Xy into a finite number S of bins (like
histogram).

@ Compute the average outcome Y in each bin.
© Plot the average outcomes against the midpoint of each bin.

(Like regressing Y on S indicator functions that indicate if X; is in the
corresponding bin).

But if X continous, binning throws away info, doesn't yield an estimate of
m(x) for every possible x and not obvious how to pick the bins.
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Conditional expectation estimation: kernel regression

If X; continuous:

Kernel regression (Nadaraya-Watson):

It is weighted average:

k)
m( O)ZZJK<)<],,XO) Y]
NS

=w;

Where the weights w; sum to 1, and observations closer to xy get larger
weights.
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Conditional expectation estimation: kernel regression

Say X € RX.
Consistency: If N — oo, h — 0 and Nhk — oo (+ regularity conditions):
m(x0) & m(xo) = E[Y|X = xo]

Asymptotic normality: If N — oo, h — 0, Nh — oo AND Nh¥+4 — 0
(which guarantees that the bias goes to 0, aka “undersmoothing”):

N d 02(X0) 2
VNBK(#i(x0) — m(xg)) = N <o, 7o) / K(z) dz))
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Conditional expectation estimation: kernel regression
h is the tuning/smoothing parameter:

@ Large h: regression is smoother (lower model flexibility)

@ Small h: regression is more wiggly (higher model flexibility)

5

Kernel regression, bandwidth = 0.80 Kernel regression, bandwidth = 0.40
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Optimal h? Options: eye-ball it, plug-in methods, cross-validation.
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Conditional expectation estimation: kernel regression
Cross-validation:
Idea: choose h to minimize an estimate of the out-of-sample error.

hev = argn";jn CV(h)
1 .
hey = argmin ;Qy(h)

.1 1 . o
hey = argmin Z 7 Z(Y, — m_;(Xi))
J i€l;
m_j is the kernel regression estimator that excludes observations in fold j.
Note that, if J = N:

1 X
hev = argmin Z(Yi — h_i(X))?
1
m_; is the kernel regression estimator that excludes observation i from the
sample.
Exercise: Pset 11, Exercise 2 asks you to show that CV/(h) is indeed an unbiased
estimator of the out-of-sample error.
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Conditional expectation estimation: series regression

Series regression:

m(xo) = bo + bixg + ... + Bpxg
Where:

~

b= ' Y — bo — b1.X; — boX?... — bpXP)?
arg min Z( o — biXi — b X pX7)

That is, it fits a polynominal of X; of order p.

Note 1: Stome-Weirstrauss approximation theorem: any continuous m(x)
can be well approximated by linear combinations of polynomials over
compact sets.

Note 2: this notation assumes for simplicity that x is scalar, but can
extend to case where it has higher dimension.
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Conditional expectation estimation: kernel regression
Consistency: If p — oo as N — oo (and true m(x) is smooth):
m(x0) & m(xo) = E[Y|X = xo]

Note: p depends on N, denote as py. It is the tuning parameter:
@ Small py: regression is smoother (lower model flexibility)
o Large py: regression is jagged (higher model flexibility)

Series ion, order=5 Series regression, order = 7
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Conditional expectation estimation: series regression
A combination of kernel regression and series regression...

Local polynominal regression:
For each xo, compute i(xg) = bg + bixo + ... + bpx§

b= K Y: — by — by X; — boX?... — b, XP)?
argborjvm Z ( )( o — b1 0 X pX')

That is, fit a polynominal regression locally around each point xg

@ Kernel regression is particular case of local polynomial regression that uses p = 0

@ Series regression is a particular case of local polynomial regression that uses
constant kernel.

Note: again, this notation assumes for simplicity that x is scalar, but can
extend to case where it has higher dimension.
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Conditional expectation estimation: series regression
Special case:

Local linear regression:
For each xp, compute rfi(xp) = by + b1xo

~ 3 X,'—Xo 2
b= > K =—=) (Yi—bo— b X
RCH ,. < h >( 0~ bXi)

Local linear regression, bandwidth = 0.80 Local linear regression, bandwidth = 0.40
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